Skip to main content
Monthly Archives

July 2021

Unity Test Gives Insight Into Your Unborn Baby’s Alpha & Beta Thalassemia Status

By Unity Test No Comments

Hemoglobinopathies are diseases that affect the formation of the red blood pigment hemoglobin. The diseases are common in Nigeria and Africa in general. 

Among the most common hemoglobinopathies, alpha and beta thalassemias are caused by altered hemoglobin molecules, which can lead to multiple organic lesions. Thalassemias are characterised by an abnormal haemoglobin production that can lead to anaemia and destruction of red blood cells. Alpha and beta thalassemia, the two main types of thalassemia, are caused by inadequate production of the α (alpha) and/or ß (beta) globin molecule.

Depending on the severity of the condition, the quality of life of the patients may be severely limited and their life expectancy significantly reduced.

Symptoms of thalassemia vary from mild, to severe and even fatal. In certain ethnic groups, the prevalence can be as high as 30 percent, with up to 90 percent as carriers.

It is hypothesised that alpha and beta thalassemia are more prevalent in malaria exposed regions due to improved disease protection.

They are distinct hematologic disorders caused by a defect in globin chain production. There are many thalassemia variants that result in people being carriers but not necessarily patients. 

Thalassemia is highly heterogeneous and presents challenges to clinicians and laboratories alike. With the changing patterns of thalassemia syndromes, there is increased demand for testing. 

Alpha-thalassemia is caused by defects on chromosome 16p, where the alpha globin cluster is located, while beta-thalassemia is a defect on chromosome 11. 

Thalassaemia is the most common inherited blood condition in the world. It is caused by changes to the genes for haemoglobin – a protein in red blood cells that carries oxygen around the body. Changes affecting haemoglobin result in severe anaemia.

Thalassaemia is usually diagnosed within the first six months of life and can be fatal in early childhood without ongoing treatment. 

Alpha-thalassaemia involves genetic changes in two genes (HBA1 and HBA2). Beta-thalassaemia involves changes in one gene (HBB).  

Thalassaemia minor refers to people who have genetic changes in one copy of the HBB gene (for beta-thalassaemia) or in one copy of each of the HBA1 and HBA2 genes (for alpha-thalassaemia), but still have second copies of these genes that don’t have genetic changes. These are known as ‘carriers’ of the condition.

People who are carriers have mild or no symptoms, but they carry the genetic changes and can pass them on to their children. Thalassaemia minor can refer to people with either alpha- or beta-thalassaemia.

If you are diagnosed with beta-thalassaemia minor, you have one changed copy of the HBB gene, and one unchanged copy of the gene. Because you have one functioning copy of the gene, your health is not affected by beta-thalassaemia. The only way to detect if someone is a carrier is by a specific blood test for thalassaemia.

Thalassaemia major refers to when you have changes in both copies of the affected gene or genes. This means that you have no fully functioning copies of the genes. 

You could be with either alpha- or beta-thalassaemia. 

If you are with either alpha- or beta-thalassaemia major, you will have symptoms associated with the condition. Beta-thalassaemia major is more common than alpha-thalassaemia major.

If you and your spouse are carriers of the same type of thalassaemia, any of the following could apply to your children: 

  • 25 percent risk of developing thalassaemia major because they inherited the thalassaemia gene from both of you
  • 25 percent chance of not inheriting the thalassaemia gene at all
  • 50 percent chance of inheriting the gene from one parent and becoming a carrier

 Symptoms appear in early childhood. They include: 

  • severe anaemia – red blood cells are produced without enough haemoglobin to carry oxygen
  • paleness
  • sleep difficulties
  • poor appetite
  • failure to grow and thrive
  • enlargement of organs – such as the spleen and liver.

There is no cure for thalassaemia major and treatment must continue for life. Ongoing treatment includes regular blood transfusions to boost haemoglobin levels in the blood. These transfusions can lead to a build-up of iron that can cause serious side effects, including diabetes, heart failure and liver disease. 

Thalassaemia can be diagnosed through genetic tests and pre-pregnancy. It is recommended that couples at risk should be tested for thalassaemia carrier status, especially before starting a family. Couples may also choose prenatal diagnosis with the option of terminating the pregnancy if the foetus is diagnosed with thalassaemia major. 

If thalassaemia runs in your family, a genetic counsellor can explain what genetic testing options are available to you and other family members. You may choose to visit a genetic counsellor if you are planning a family – to find out your risk of passing the condition on to your child, or to arrange for prenatal tests. 

Carrier screening allows parents-to-be to find out their chances of having a child with this disease. If you are already pregnant, a prenatal diagnostic test allows you to find out if your fetus is at risk or actually has cystic fibrosis or is a carrier.

Unity Test is the only prenatal screen test currently available that is able to screen cell-free fetal DNA for genetic mutations associated with alpha- and beta- thalassemia using just one tube of blood from the mother as source material. 

The test is currently available in Nigeria only at Genomix. The procedure is affordable, simple, convenient, safe for mother and baby and the results are fast produced. It is a non-invasive test, only a tube of blood from the mother’s arm is required. 

With the Unity Test, you can have access to safe, accurate and affordable prenatal screening for alpha thalassemia and beta thalassemia. The test is one of the most accurate for carrier screening for adverse health conditions.

Unity Test is based on a patented Quantitative Counting Template (QCT) molecular counting technology, which allows count of the number of molecules with a single base-pair resolution.

Compared to traditional screening methods, Unity Test is faster, more affordable, and less burdensome. 

The Unity Test is the only prenatal test worldwide that tests for thalassemia and four other genetic conditions from just one tube of blood from the mother. This test is available in Nigeria exclusively at Genomix.

Carrier screening for alpha thalassemia or beta thalassemia with the Unity Test is beneficial to you and your unborn baby because it is non-invasive, safe, accurate, convenient and fast. 

It is possible to find out if a fetus has either alpha thalassemia or beta thalassemia or is a carrier through the Unity prenatal screening. This testing has a sensitivity of over 98 percent and can be done as early as 10 weeks of pregnancy.

With Nifty Test, You Can Safely Screen Your Unborn Baby for Edwards’ Syndrome

By Nifty Test No Comments

Edwards’ syndrome, also known as trisomy 18, is a rare but serious condition that affects how long a baby may survive. There’s no cure for Edwards’ syndrome and sadly, most babies with the disease will die before or shortly after being born and just a small number of babies born alive with Edwards’ syndrome will live past their 1st birthday.

The disease is linked to chromosomal abnormalities. Normally, each cell in the body contains 23 pairs of chromosomes, which carry the genes you inherit from your parents. A baby with Edwards’ syndrome has three copies of chromosome number 18 instead of two and this affects how the baby grows and develops. Having three copies of chromosome 18 usually happens by chance, because of a change in the sperm or egg before a baby is conceived.

Essentially, your chance of having a baby with Edwards’ syndrome increases as you get older, but anyone can have such a baby. The condition does not usually run in families and is not caused by anything the parents have or have not done.

The symptoms of Edwards’ syndrome and how seriously a baby is affected, usually depend on whether they have full, mosaic, or partial Edwards’ syndrome.

Most babies with Edwards’ syndrome have an extra chromosome 18 present in all cells. This is called full Edwards’ syndrome. The effects of full Edward’s syndrome are often more severe and most babies with this form of the disease will die before they are born.

A small number of babies with Edwards’ syndrome (about 1 in 20) have an extra chromosome 18 in just some cells and this type is called mosaic Edwards’ syndrome or mosaic trisomy 18.

This can lead to milder effects of the condition, depending on the number and type of cells with the extra chromosome. Most babies with this type of Edward’s syndrome who are born alive will live for at least a year, and may also live to adulthood.

A very small number of babies with Edwards’ syndrome (about 1 in 100) have only a section of the extra chromosome 18 in their cells, rather than a whole extra chromosome 18. This is called partial Edwards’ syndrome or partial trisomy 18. How partial Edwards’ syndrome affects a baby depends on which part of chromosome 18 is present in their cells. All babies born with Edwards’ syndrome will have some level of learning disability.

Edwards’ syndrome is associated with certain physical features and health problems. They will usually have a low birthweight and may also have a wide range of physical symptoms and may also have heart, respiratory, kidney or gastrointestinal conditions.

Screening for Edwards’ syndrome is often advised for new and old couples alike. If you’re pregnant, you can be offered screening for Edwards’ syndrome between 10 and 14 weeks of pregnancy. This looks at the chance of your baby having the condition. There are different screening tests but the only non-invasive test that can detect this condition is the  NIFTY (Non-Invasive Fetal TrisomY) prenatal test. 

Unlike invasive tests such as the chorionic villus sampling (CVS) which collects a sample from the placenta and amniocentesis, which collects a sample of the amniotic fluid from around your baby, the NIFTY Test poses no risk to the mother or the unborn baby because it is 100 percent non-invasive. 

The NIFTY Test is a safe, simple, non-invasive prenatal test (NIPT), which offers screening for certain genetic conditions such as Edwards’ syndrome from as early as week 10 of pregnancy.

Using the latest genetic sequencing technology, NIFTY has over

99 percent accuracy for the three most common trisomy conditions present

at birth – Edwards’ Syndrome, Down Syndrome and Patau Syndrome. The test is currently available in Nigeria only at Genomix. 

The procedure is affordable, simple, convenient, safe for mother and baby and the results are fast produced. It utilizes cell-free DNA fragments which are short fragments of DNA, that are circulating in the blood. 

During pregnancy, the fragments originating from both the mother and fetus are present in the maternal blood circulation.

The NIFTY test requires taking a small maternal blood sample and analysing to screen for chromosomal abnormalities in the fetus. The technology behind the NIFTY test enables highly accurate results with detection rates. 

If the test result is positive for Edwards’ syndrome before birth, you’ll have opportunity to be offered support and information so that you can make informed decisions. 

Advantages of Non-Invasive Prenatal Testing (NIPT)

By Nifty Test, Unity Test No Comments

Prenatal testing or screening can provide valuable information about your baby’s health and can identify whether your baby is more or less likely to have certain birth defects, many of which are genetic disorders. 

These tests can be invasive or non-invasive in nature and they are usually offered during the first or second trimester of pregnancy. They include blood tests, a specific type of ultrasound and prenatal cell-free DNA screening. 

What is Non-Invasive Prenatal Testing? 


Non-invasive prenatal testing (NIPT), or sometimes called non-invasive prenatal screening (NIPS), is a method of determining the risk that the fetus will be born with certain genetic abnormalities. NIPT is a blood screening that the doctor may offer any time after 10 weeks gestation during your pregnancy. 

The testing analyzes small fragments of DNA that are circulating in a pregnant woman’s blood. Unlike most DNA, which is found inside a cell’s nucleus, these fragments are free-floating and not within cells, and so are called cell-free DNA. 

During pregnancy, the mother’s bloodstream contains a mix of cell-free DNA that comes from her cells and cells from the placenta. The placenta is tissue in the uterus that links the fetus and the mother’s blood supply. These cells are shed into the mother’s bloodstream throughout pregnancy. 

The DNA in placental cells is usually identical to the DNA of the fetus. Analyzing cell-free DNA from the placenta provides an opportunity for early detection of certain genetic abnormalities without harming the fetus.

Why is NIPT considered non-invasive? 

NIPT is considered non-invasive because it requires drawing blood only from a pregnant woman and does not pose any risk to the fetus. Essentially, NIPT is a screening test, which means that it will not give a definitive answer about whether or not a fetus has a genetic condition. 

The test can only estimate whether the risk of having certain conditions is increased or decreased. In some cases, NIPT results indicate an increased risk for a genetic abnormality when the fetus is actually unaffected (false positive), or the results indicate a decreased risk for a genetic abnormality when the fetus is actually affected (false negative). 

Because NIPT analyzes both fetal and maternal cell-free DNA, the test may detect a genetic condition in the mother.

What disorders can NIPT screen for?

NIPT is specific and doesn’t screen for every genetic condition. Most often it is used to look for chromosomal disorders that are caused by the presence of an extra or missing copy (aneuploidy) of a chromosome. 

Specifically, the NIPT test primarily looks for:

  • Down syndrome – trisomy 21, caused by an extra chromosome 21
  • Edwards’ syndrome – trisomy 18, caused by an extra chromosome 18
  • Patau syndrome – trisomy 13,- caused by an extra chromosome 13
  • Klinefelter syndrome – caused by an additional X chromosome
  • Turner syndrome – caused by a missing or partially missing X chromosome

These are all genetic conditions that can cause developmental delays and physical or mental defects. The accuracy of the test varies by disorder.

NIPT may include screening for additional chromosomal disorders that are caused by missing (deleted) or copied (duplicated) sections of a chromosome, and now it is beginning to be used to test for genetic disorders that are caused by changes (variants) in single genes. It is expected that NIPT will become available for many more genetic conditions.

How is NIPT test carried out? 

There must be enough fetal cell-free DNA in the mother’s bloodstream to be able to identify fetal chromosome abnormalities. The proportion of cell-free DNA in maternal blood that comes from the placenta is known as the fetal fraction. 

Generally, the fetal fraction must be above 4 percent, which typically occurs around the tenth week of pregnancy. Low fetal fractions can lead to an inability to perform the test or a false negative result. 

To determine chromosomal aneuploidy, the most common method is to count all cell-free DNA fragments (both fetal and maternal). If the percentage of cell-free DNA fragments from each chromosome is as expected, then the fetus has a decreased risk of having a chromosomal condition (negative test result). 

If the percentage of cell-free DNA fragments from a particular chromosome is more than expected, then the fetus has an increased likelihood of having a trisomy condition (positive test result). A positive screening result indicates that further testing (called diagnostic testing, because it is used to diagnose a disease) should be performed to confirm the result.

What are the benefits of NIPT?

  • Non-Invasive Prenatal Testing (NIPT) can offer important clues about your developing baby’s health.  
  • The test may help you make informed healthcare decisions for your child, both while the baby is in the uterus and after birth
  • Can tell you if you are at higher risk of having a baby with Down syndrome, Edwards’ syndrome, Patau syndrome,  Klinefelter syndrome  and Turner syndrome
  • More than 99 percent accurate. False positives or false negatives rarely occur
  • Fast (results within 10 working days)
  • Affordable (inexpensive and only a tube of maternal blood is required) 
  • Safe because it is non-invasive, so poses no miscarriage risk or any other risk to the mother or the baby

Who should have Non-Invasive Prenatal Testing?


NIPT is a blood screening your doctor may offer any time after 10 weeks gestation during your pregnancy. Most often, your doctor will recommend the testing if you are at higher risk of carrying a child with a chromosomal abnormality. 

You are more at risk if you are 35 or older, you have a prior pregnancy with a chromosomal condition or you have abnormal test results from other tests or screening. But you may also opt for the testing if you don’t have risk factors. 

What can the NIPT results tell you?

We have explained above that NIPT works by analyzing cell-free DNA which is made up of maternal, fetal and placental DNA in your blood. 

The testing also looks at the number of your baby’s sex chromosomes, which can tell you whether you’re having a boy or a girl. If it finds extra or missing sex chromosomes, that also may signal a genetic condition.

While the test is a safe way to screen for the three chromosomal conditions, it can’t tell you for sure whether your child will have one of them. It’s a non-diagnostic test. 

If results indicate an increased risk for a genetic disorder, your doctor may encourage you to meet with a genetic counselor who can help you better understand your results and will discuss options for follow-up, including diagnostic tests and additional imaging.

So in a nutshell, NIPT can tell you:

  • Risk of your baby for a genetic disorder
  • Whether you need to go for a diagnostic test or see a genetic counselor 
  • Sex (gender) of your baby

Is NIPT available in Nigeria? (NIFTY and UNITY tests) 

The NIPT test is carried out by Genomix, Nigeria’s leading provider of innovative healthcare and lifestyle solutions based on preventive genetic testing. 

Genomix is based in Lagos. It enables pregnant women to have access to safe, accurate and affordable prenatal screening for the listed genetic conditions.  It routinely carries out the NIFTY test which is its own patented NIPT test and conveniently screens for the above-listed genetic conditions caused by extra or missing genetic information in the baby’s DNA. 

Genomix also carries out the UNITY test which is its patented highly accurate NIPT test that screens for cystic fibrosis, spinal muscular atrophy, sickle cell disease, alpha thalassemia, and beta-thalassemia.

The UNITY NIPT is the only test that screens mother and baby for the five commonly inherited conditions from a single tube of blood.

prenatal sickle cell test - genomix.ng

Screen Your Unborn Baby for Sickle Cell Disease with UNITY Prenatal Test

By Unity Test No Comments

Sickle cell disease is an inherited condition in which the red blood cells in your body are shaped like a sickle (like the letter C). Red blood cells carry oxygen to the rest of your body. In a healthy person, red blood cells are round and flexible. They flow easily in the blood. 

If you have sickle cell disease it means that your red blood cells are stiff and can block blood flow. This can cause pain, infections and, sometimes, organ damage and strokes.

Sickle cell disease may lead to anemia which is a situation that happens when you do not have enough healthy red blood cells to carry oxygen to the rest of your body.

Sickle cell disease is genetic; this means it is passed from parent to child through genes. A gene is a part of your body’s cells that stores instructions for the way your body grows and works. Genes come in pairs and you get one of each pair from each parent.

To have sickle cell disease, a baby needs to inherit a gene change for sickle cell from both parents (SS) . If the baby inherits the gene change from just one parent, then the baby will have the sickle cell trait (AS) . 

This means that although the baby has the gene change for sickle cell disease, the baby doesn’t actually have the disease. When this happens, such a baby is a carrier. A carrier has the gene change but doesn’t have the condition.

Sickle cell trait cannot become sickle cell disease and rarely do people with sickle cell trait show signs of sickle cell disease. Bur as a result of the possibility of passing sickle cell disease or sickle cell trait to your children, prenatal testing is essential. If you and your partner both have sickle cell disease (SS), your baby will also have the disease. However, if you and your partner both have sickle cell trait (AS), one of the following is possible:

  • there’s a 3-in-4 chance (75 percent) that your baby won’t have sickle cell disease
  • 1-in-2 chance (50 percent) that your baby will have sickle cell trait
  • 1-in-4 chance (25 percent) that your baby will have sickle cell disease 
  • 1-in-4 chance (25 percent) that your baby won’t have sickle cell disease or sickle cell trait

The Unity test results are interpreted as Low-Risk or High Risk, where the result says low risk and the chances are further stated as maybe 1 in 5000 for instance, this means the baby has a 99% chance of not being SS.

However when the result says High-Risk, this means it is also 99% certain that the baby will be SS, In cases of High-Risk it will also come with a percentage like 1 in 3 etc, at this instance it means the baby has the chance of being SS.

A genetic counselor is trained to help you understand how genes, birth defects and other medical conditions run in families, and how they can affect your health and your baby’s health. It is advisable that you consult a genetic counselor. 

It is not difficult to find out if you have sickle cell disease or sickle cell trait. If sickle cell disease or sickle cell trait runs in either of your families, the  family health history is taken. 

This is a record of any health conditions and treatments that you, your partner and everyone in both of your families have had. 

Sickle cell disease is common in Nigeria and you can find out if your baby has either the disease or the sickle cell trait during pregnancy. 

If you or your partner has either the sickle cell disease or the sickle cell trait, you can have a prenatal test to find out if your baby has inherited either disease. 

If you or your partner has sickle cell disease (SS) or the sickle cell trait (AS) you can have a prenatal test to find out if your baby has either the disease or the trait. You can find out safely, quickly and accurately with the Unity Prenatal Test. 

If you are pregnant and you and your spouse have AS genotype, you can go for the Unity Test that can enable you to find out if your unborn baby has inherited the sickle cell gene from both of you.  

The Unity Test is carried out in Nigeria by Genomix. The test is beneficial to you and your unborn baby because it is a non-invasive blood test, 

From just one tube of blood sample taken from you the mother, your status can be determined. If you are a carrier of the sickle cell gene (AS) the same blood sample will then be tested to determine the status of your unborn baby. 

The Unity Test is the only test that screens mother and baby for sickle cell disease and four other commonly inherited conditions from a single tube of blood and it can help you to make decisions about a pregnancy depending on the result. 

The procedure is affordable, simple, convenient, safe for mother and baby and the results are fast produced. It is a non-invasive test, only a tube of blood from the mother’s arm is required. 

With the Unity Test, you can have access to safe, accurate and affordable prenatal screening for sickle cell disease. The test is 99 percent accurate for carrier screening for sickle cell disease.

Unity test

You Can Protect Your Unborn Baby from Cystic Fibrosis with Unity Test

By Uncategorized No Comments

Cystic fibrosis is one of the most common life-shortening diseases. It is based on a genetic modification of a gene known as the CFTR gene. In Nigeria, a significant number of babies are born with the disease, but it is preventable. 

The symptoms of cystic fibrosis can vary in type and severity. Many people with the disease produce thick, sticky mucus in their bodies. This mucus builds up and clogs the lungs. This makes it hard to breathe and can lead to infection. Cystic fibrosis also can make it hard for the body to break down and absorb food.

The mild form of the disease is quite common but it becomes serious and affects a person’s health. Treatments are available, but the disease gets worse the longer a person has it. There is no permanent cure. 

Essentially cystic fibrosis is a genetic disorder caused by the faulty gene that is passed from parent to child. Carrier screening allows parents-to-be to find out their chances of having a child with this disease. If you are already pregnant, a prenatal diagnostic test allows you to find out if your fetus is at risk or actually has cystic fibrosis or is a carrier.

Unity Test is the only prenatal screen test currently available that is able to screen cell-free fetal DNA for genetic mutations associated with cystic fibrosis using just one tube of blood from the mother as source material. 

The test is currently available in Nigeria at Genomix. 

The procedure is affordable, simple, convenient, safe for mother and baby and the results are fast produced. It is a non-invasive test, only a tube of blood from the mother’s arm is required. 

With the Unity Test, you can have access to safe, accurate and affordable prenatal screening for cystic fibrosis. The test is 99 percent accurate for carrier screening for 

Unity Test is based on a patented Quantitative Counting Template (QCT) molecular counting technology, which allows count of the number of molecules with a single base-pair resolution.

With Unity, physicians can screen for most common genetic disorders directly in the baby from maternal blood alone. Compared to traditional screening methods, Unity Test is faster, more affordable, and less burdensome. 

The Unity Test is the only prenatal test worldwide that tests for cystic fibrosis, spinal muscle atrophy, sickle cell disease and thalassemia. This test is available in Nigeria exclusively at Genomix.

The test is beneficial to you and your unborn baby because it is a non-invasive blood test. From just one tube of blood sample taken from you the mother, your status can be determined. 

If someone is a cystic fibrosis carrier, it means they inherited one gene from the mother and one from the father. If a person has only one copy of a gene for cystic fibrosis, he or she is a carrier. 

Carriers often do not know that they have a gene for the disease. They usually do not have symptoms or may have only mild symptoms.

There are options for carrier screening which can be done before pregnancy or during pregnancy. If you have carrier screening before you get pregnant and both you and your partner are carriers, you have more options. If you have carrier screening while you are pregnant, you have fewer options.

Carrier screening for cystic fibrosis is offered to all women who are thinking about getting pregnant or who are already pregnant in Nigeria by Genomix, a Lagos-based facility. It is advisable to have this screening.

The mother is usually tested first. If results show that you are a carrier, your partner is tested. If your partner has a family history of cystic fibrosis, he may be tested first.

If you are already pregnant, you and your partner can be tested at the same time.

If both of you are carriers, there are three possible outcomes:

  • There is a 1-in-2 (50 percent) chance the baby will be a carrier, like you and your partner. Being a carrier usually will not affect the health of the baby, but he or she could have a child with cystic fibrosis in the future
  • There is a 1-in-4 (25 percent) chance the baby will have the disease 
  • There is a 1-in-4 (25 percent) chance that the baby will not have cystic fibrosis and will not pass on the disease to future children.

It is possible to find out if a fetus has cystic fibrosis or is a carrier through the Unity prenatal screening. This testing has a sensitivity of over 99 percent and can be done as early as 10 weeks of pregnancy.

If tests show that both of you are carriers, it means that in each pregnancy the fetus will have a 1-in-4 chance of having cystic fibrosis. If you want to know whether your fetus has the disease, you will need to undergo the Unity test.